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Composite chiral-ferrite media, with the introduction of anisotropy into the well-studied chiral ma-
terials in order to blend the effects of Faraday rotation and optical activity, have potential applications
in chirality management. In the present consideration, based on the concept of characteristic waves and
the method of angular spectral expansion, field representations in this class of media are developed. The
analysis reveals that the solutions of the source-free Maxwell’s equation for homogeneous composite
chiral-ferrite media can be represented in sum-integral forms of the circular cylindrical vector wave
functions in isotropic media. The addition theorem of vector wave functions for composite chiral-ferrite
media can be derived from that of vector wave functions for isotropic media. An application of the
present theory in scattering is presented to show how to use these formulations in a practical way.

PACS number(s): 41.20.Jb, 42.25.Bs, 52.35.Hr

I. INTRODUCTION

The vector wave functions, which are important con-
cepts in electromagnetism, have found versatile applica-
tions and presented great advantages compared with oth-
er methods (e.g., three-dimensional moment method [1],
coupled-dipole method [2], and integral-equation tech-
nique [3]). For instance, the circular cylindrical vector
wave functions have been successfully used in studying
the scattering properties of a multilayer chiral cylinder
[4], and the radiation characteristics of a dipole antenna
in the proximity of a gyroelectric cylinder [5]. Unfor-
tunately, to the best knowledge of the author, only in bi-
isotropic media [6] (with isotropic media and the well-
studied reciprocal chiral media as their subset cases) and
gyrotropic media [5], have electromagnetic waves been
represented in terms of the vector wave functions. There-
fore, field representations in complex media need to be
developed, so as to provide methodological convenience
in investigating the electromagnetic properties of these
materials.

With the advancement of polymer synthesis tech-
niques, increasing attention has been attracted to the area
of interaction between electromagnetic waves and chiral
media, in order to determine how to use these materials
to provide better solutions to current engineering prob-
lems. It has been discovered that chiral materials can be
utilized to construct antireflection coatings, reciprocal
microwave components, and antenna radomes, whose
physical behaviors are determined by the chirality degree.
However, only limited methods exist in the control of
chirality degree once chiral materials are fabricated, ex-
cept with the introduction of certain forms of anisotropy.
With chirality management as investigation motivation,
Engheta, Jaggard, and Kowarz [7] investigated the prop-
agation characteristics of electromagnetic waves in un-
bounded Faraday chiral media, which blend the effects of
Faraday rotation with those of optical activity. Lately,
the reflection and transmission properties of electromag-
netic waves in Faraday chiral slab with finite longitudinal
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extent were researched and the interplay of Faraday and
chiral effects was studied [8]. Most recently, general for-
mulations of composite chiral-ferrite media, such as non-
reciprocal properties, dyadic Green’s functions in un-
bounded space, dispersion relations, and polarization
characteristics, are developed by Krowne [9]. Neverthe-
less, much effort is still needed in order to achieve a
throughout understanding and exploiting of the chirality
management.

A composite chiral-ferrite medium, formed by immers-
ing chiral objects in a magnetized ferrite, is a subset of
the wider class referred to as bianisotropic media. Excel-
lent works in general bianisotropic media have been done
by Post [10], Kong [11], and Chen [12] among others. In
contradistinction to these general considerations, the
present contribution is aimed to develop the field repre-
sentations in composite chiral-ferrite media in terms of
the cylindrical vector wave functions. The formulations
lead to compact and explicit expressions of the field rep-
resentations in this class of media. In addition, to make
the efficient recursive algorithm developed by Chew [13]
available to multiscatterers and multilayered structures
consisted of composite chiral-ferrite media, an outline to
derive the addition theorem is described. As an illustra-
tive example, electromagnetic scattering of a normally in-
cident plane wave by an infinitely long composite chiral-
ferrite rod is studied.

In this manuscript, the harmonic exp(iwt?) time depen-
dence is assumed and suppressed throughout.

II. THEORETICAL DEVELOPMENT

From a phenomenological point of view, a composite
chiral-ferrite medium can be characterized by a set of
constitutive relations [9]

D=¢E+§,H, (1a)
B=uH+{,E, (1b)
where
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w ik, O
u=|—ik, p O (1c)
0 0 no

is the modified permeability tensor of a magnetically
biased ferrite, taking into the contributions due to chirali-
ty. (&.1, &.,) and € are the chirality parameters and per-
mittivity, respectively.

Substituting the constitutive relations (1a) and (1b) into
the source-free Maxwell’s equations, the H-field vector
wave equation in this composite medium is yielded [9]

VXVXH+io(£.,—£,,)VXH
— ool /po—Ecrbeal/(1oe) JH=0, ()

J

k2—k2—a  —k.k,—bk,—ic —kk,+bk,
W= |—kck,+bk,+ic  k*—k}—a  —kk,—bk,
—k,k,— bk, —k,k,+bk,  k*—k2}—a’

with the notations
a :wzsﬂ[ 1=8.18c2/(epn)] s
b=wlf,—61),

c=w’k,, ,

al=a)28.u‘0[ 1 _gclgcl/(a.u'o)] ’

and k?=k2+k}+k2. For nontrivial solutions of (4), the
determinant of matrix W operating on H(k) must be
equal to zero. Straight-forward algebraic manipulation
leads to the characteristic equation

ak,+k2[(k}—a)a+a')+c*+ab?]
F[(k2—a)*—(bik,—cP]a'=0, ()

where k2 =kZ+k?.

In the following analysis, the roots of (7) are designated
as kp=kpq (g=1,2,3,4), which are functions of k,.
Their corresponding eigenvectors, expressed in a circular
cylindrical coordinate system, can be easily obtained
from Eq. (4) in conjunction with the rectangular-circular
cylindrical coordinate transformation

H,(k;,¢,)=[4,(k;,)cos(¢—¢, )+ B,(k,)sin(¢—,)]e,
+[— 4,(k,)sin(¢—¢y)
+B,(k,)cos(¢—¢,)]e,+e, , (8)
where the spectral parameters are
Ay (k) =k gk (k2 +k2—a+b?)+ibc]/D,(k,), (9a)

B,(k,)=ik,,(iab—ck,)/D,(k,) , (9b)

D, (k,)=(k}—a)(k},+k}—a)—(ibk,—c)*, 9¢)
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with Tdenoting the unit dyadic.

The characteristic waves corresponding to (2) can be
examined in the Fourier domain by introducing the
three-dimensional transformation

Hr=[" [7 [" Hke *dk.dk,dk, , )

where k=k, €, +k,€,+k,¢€,, and €; indicates unit vector
in the j direction. Substituting Eq. (3) into (2) and after
some proper vector algebraic manipulation, we have

J° [T 7 wawdk,dk,dk, =0, @)

where the spectral matrix W is determined as

) (5)

and ¢, =tan'1(ky /k,), p=tan"}(y /x).

Returning to (3) and noting k3= —k,, k3 ==k,
we can express the magnetic field in circular cylinderical
coordinate system in terms of the above mentioned eigen-
vectors

—i kzz+kpqpcos(¢—¢k )]

2 [} s
Hn=3 [ dsz: _ddie "
g=1 —° k

xHq(kz,¢k )qu(kz;¢k) ’ (10)

where p=(x>+»?)!"?, and H,,(k,,¢,) is the amplitude of
the spectral longitudinal component of the magnetic field.
The symmetric roots k3 and k4 are not included in the
summations of (10), since these symmetric roots are au-
tomatically taken into account as the spectral azimuthal
angle ¢, spans from O to 2.

Substituting the explicit expression of the eigenvector
(8) into (10), the solution H(r) of the source-free vector
wave equation (2) for an infinite composite chiral-ferrite
medium is expressed in terms of the scalar cylindrical
wave functions. However, in order to have a tractable
solutions for the boundary value problems involving cy-
lindrical structures of composite chiral-ferrite media, it is
required to transform the expression of (10) into a form
resembling the vector wave solution for an isotropic
medium. To this end, applying the angular spectral ex-
pansion for H,,(k,,¢;) component under the hypothesis
that H,,(k,,$,) is continuous with respect to the ¢, vari-
able

Hy(k,,¢:)= 3 hqn(kz)e—iwk ’ an

n=—oo

we have
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S (k) Hg,(k),  (12)

n=-—ow

2 -]
Hrn=3 [° dk,
g=t ~%
where

27
an(kz)= f¢k=0d¢ke
XH, (k;, ) - (13)

—i[kzz+kpqpcos(¢—¢k )+ng, ]

Substituting into (13) the well-known identity
—ik pcos(d—¢;) _ . —im(¢—¢,)
e M K= 3 (=), (kyple ko,

(14)

and its derivatives with respect to p and ¢, after cumber-
some mathematical manipulation by grouping properly
the terms involving in the integration for the ¢, variable
and introducing the circular cylindrical vector wave
functions, we end up with (see Appendix for detail)
2 © ©
Ho=73 ["dk, 3 (—i)lh,(k,)
g=1 ~%

n=—o

X[ Ak, MK, k0 )
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NPk, k)

1| ., 3ZWk,p) — nk, .
Tk, l""z“’% 8= " Z kg Ry

- —i(ng+k,z)
+k2,ZNk,0p)e, |e

; (16b)

dZ Nk ,0p) .

. in .
LYk, k,q)= o ;—Z,(,’)(kpqp e,

—i(ng+k,z)
e

—ik, ZJ(k ,0p e, , (16c¢)

with

Jn(kpqp)’ ]=l
Y, (kpep) » j=2
HM(kyp), j=3
HP(k,.p), j=4,

and k,=(k2,+k2)'?. In Eq. (15), the weighted
coefficients of the vector wave functions are found to be

Z)(k ,0p)= (16d)

+BMk, )NV k,, k) AJ(k,)=—2iB,(k,)/k,, , (17a)
+C ke, LNk, K oy )] By(k,)=—2k, A, (k,)/(k,.k,)
(15) +2[1+k,, 4,(k,)/k,1/k, , (17b)
where the vector wave functions are defined as C,;'(kz )=2ik,[1+k,, A,(k,)/k, ]/ qu . (17¢)
: j . The representation for the electric field can be easil
() = > 1% y
M,k K pg )= p Z,/(kygp)e, obtained from the relation [9]
" E=—1 [i(VxH)+§clH], (18)
9z (kpqp)e o iRk (16a) Ele
op ¢ ’ which results in
|
2 L. ©
E(r)=7 3, f dk, I (—i)hg, (k) Ag(k, MK, K o0 )+ Bk, IND (K, ko )+ C(k, )L (K, k)] (19)
g=l —*® n=-—ow

with the weighted coefficients of the vector wave func-
tions determined as

Alk,)=—ik,B}k,)/(we)—E ANk, ) /e,  (20a)

B(k,)=—ik, A}k,)/(we)—E,BlKk,) /e,  (20b)
and

Cylk,)=—£,Clk,) /e . (20c)

Since Bessel, Neumann, and Hankel functions of the
same order satisfy the identical differential equation, the
first kind of vector wave functions in (15) and (19) can be
generalized to three other ones, corresponding to Neu-
mann and Hankel functions.

The resulting equations (15) and (19) manifest the fact

that the solutions of the source-free Maxwell equations
for composite chiral-ferrite media, which are expanded in
terms of the circular cylindrical vector wave functions in
isotropic media, are superpositions of two transversal
waves (TE for M and TM for N) and a longitudinal wave.

It should be pointed out that the formulations
developed here unify those of gyromagnetic media, and
thereby can be theoretically verified by comparing their
special forms (for §.,=&,=0) with the duality forms of
the already existed results corresponding to gyroelectric
media [5].

Straightforwardly, the addition theorem of circular cy-
lindrical vector wave functions for composite chiral-
ferrite media can be directly obtained by using the coun-
terpart of isotropic media [13] in Eqgs. (15) and (19).
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III. AN APPLICATION EXAMPLE

To illustrate how to use the present theory in a practi-
cal way, we study the electromagnetic scattering by an
infinitely long composite chiral-ferrite rod due to a nor-
mally incident plane wave.

Let us fix the coordinate system so that the scatterer is
bounded by the surface p=p,, and its axis is coincident

J

A —ikgx
Einc( r)—ezEOe

=["a, 3 (—i)"EOS(kZ)N‘,,“(kz,kp)/ko,

n=-—o

ik x

H,,(r)=—¢,Eje ° /7,

=["a 3 (—i)""EOS(kz)M‘,,”(kz,kp)/(kono),

n=—o

where k,=(k§—k?)'/?, and 8() is the Dirac § function.
Here, ko=w(egty)'’? and 1y=(uy/gy)'/? represent the
wave number and wave impedance of free space, respec-
tively. The electromagnetic fields induced in this scatter-
er can be expressed in terms of the circular cylindrical
vector wave functions in the way we have presented in
the previous section. And the scattered electromagnetic
waves may have TM, and TE, components and should be
expanded as [4,14]

Eon=["dk, 3 (=ir(a,MPk,k,)

n=-—oo
+b,NM(k,,k,)], (22a)
H. (0= ["dk, 3 [(=)"""/n]
X[a,NP(k,,k,)
+b,MP(k,,k,)] . (22b)

In the expressions (21) and (22), the functions MY'(k,,k )
and NY )(kz,kp) (j=1,4) are the circular cylindrical vec-
tor wave functions defined in the previous section.

Applying the widely-employed mode matching method
[4,11,14] to have the boundary conditions of continuous
tangential electric and magnetic fields satisfied at the
outer surface of the scatterer p=p,, we derive the expan-
sion coeflicients of the scattered fields

2E,

a,=————8(k,)[V¢,(po) X2, (po)
TP, (po) [Via(Po)X 2, (po
$n(p0)X 1, (p) ], (23a)
and
Eo k) 17 (kypy)C, (p0)
n A,,(Po) z n OPO n pO
(23b)

+ =7, (kopo)D,(po) | »
Mo
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with the z axis. The surrounding medium is taken to be
free space with permittivity €, and permeability .

In the case of a TM, polarized incident plane wave il-
luminating along the +Xx axis, the incident electromag-
netic fields can be expanded in terms of the circular cylin-
drical vector wave functions [4,14] (note that the circular
cylindrical vector wave functions used here are slightly
different from those defined in Ref. [4]).

(21a)
(21b)
[
where
VE (po)= ALk, )k o (K p0p0)
+ /’;—"Oc;( k1, (K popo) (24a)
X2, (pg)=BE(k, Yk yyd (K o) (24b)

for g=1, 2, and p =e,h; and the primes over the Bessel
functions denote derivatives with respect to the argu-
ment. In Egs. (23a) and (23b),

C,(po)=—koH'* (kop,)
X[V 1 (Po)X3x (po) = V3, (po)X 1, (po)]
—iweoHP [V, (o) Vi (po)
—V5:(po)V 1 (po)]
D, (pO):kOHrSZ)I(kOPO)[XLI’n(pO)Xgn(pO)

(25a)

—X5,(po)X 1, (po)]
+ime0H,(,2’[ Vin(po)X3,(po)
—Vin(po)Xia(po)]
A, (po)=—koH > (kopo)C,lpg)
—iweoH?" (kopo)D,(pg) -

(25b)

(25¢)

Since the emergence of Dirac function 8(k,) in (23a) and
(23b), the infinite integration of the k, variable for the
scattered fields is actually disappeared.

The bistatic echo width, which represents the density
of the power scattered by the cylindrical object, is defined
as

Re[E,,(r) X HE,(1)]€,
Re[E,, (r) XH}(r)]%,

A (¢)= lim 2mp (26)

p—> o

where the asterisk indicates complex conjugate, and Re] ]
denotes the real part of the complex function.
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FIG. 1. Scattering pattern of an infinitely long composite
chiral-ferrite rod due to a normally incident TM, polarized
plane wave. The scatterer has a radius of po=1.3A,, and consti-
tutive parameters of e=3.6g,, pu=2.4uy k,,=0.15u,
E.=1.131i(ge0)' /%, and £,,=3.016i (uoe,)' /%

Recalling the asymptotic expression of the Hankel
function in the far region

172
_ 2 —i[kgp—(2n+1)m/4]
HP(kop)= vl B 0 , p— o,
27
we can rewrite the expression (26) in a more explicit way
w 2
A, == 11 3 (—1)8,a,c05(n$)
koEG | | n=0
w 2
+| 3 (—1)"8,b,cos(ng) , (28)

n=0

where §, is the Neumann factor, i.e., §, =1 for n =0 and
2 for n >0.

It should be mentioned that previous to the actual
computation, a convergence test was made to check the
validity of the numerical results. Figure 1 pictures the
scattering pattern of the bistatic echo width, where A, is

2 e
Hin=3 [° dk,
g=1 "%

n=-—o

4111

the wavelength of the incident wave. In this case, the
scatterer has a radius of p,=1.3A,, and constitutive pa-
rameters of €=3.6gp, p=2.4u, k,, =0.15u,,
E.1=1.131i(poey)!/? and £,,=3.016i(uey)'/2. Since the
incident wave is illuminated along the ¢=180° line, the
pattern has a maximum in the forward direction, i.e.,
¢=0".

IV. CONCLUDING REMARKS

In the present contribution, field representations in
composite chiral-ferrite media are developed in terms of
the circular cylindrical vector wave functions in isotropic
media. The formulation is greatly facilitated by using the
method of angular spectral expression for the spectral ex-
pansion coefficient of the magnetic field. The theory
developed here generalizes the canonical solutions of vec-
tor wave functions for isotropic media, and recovers the
cases of gyromagnetic and biisotropic media. Even if the
notations introduced here are somewhat cumbersome
which are inevitable due to the complexity of the media
we have tried to tackle, the formulations proposed here
can be theoretically examined by comparing their special
forms with the duality forms of the already existed coun-
terparts. Moreover, it is of interest to note the cylindrical
vector wave functions can be expanded as discrete sums
of the spherical vector wave functions [15], therefore the
theory presented here could be extended to solve the
problems of spherical structures. It is believed that the
present contribution would be helpful in simplifying the
analytical and numerical solutions to boundary value
problems of layered structures as well as multiscatterers
consisting of composite chiral-ferrite media. An applica-
tion of the present theory in investigating the electromag-
netic scattering by an infinitely long composite chiral-
ferrite rod is given, which illustrates the applicability of
the proposed theory.

APPENDIX:
DERIVATION OF EQUATIONS (15) AND (17)

Substituting the expressions (8) and (13) in (12), we
have the magnetic field expanded in terms of eigenvectors
in the circular cylindrical coordinate system

ol 27 —ilk,z+k pcosi¢—¢,)+nd; ]
3 hqn(kz)f¢k=0d¢ke oa

X {[ 4, (k,)cos(¢—; )+ B, (k, )sin(p—, ) |6,

+[— A,(k,)sin(¢—¢ ) +B,(k,)cos(¢—¢;)]€s ¢, ] . (A1)
Then, taking the derivatives of (14) with respect to p and ¢, respectively, we have
_, _ ® 3,k 0p) —imis—
cos(g—gyle mPTHIZ 5 ymo1 S ZeaP]  imed) (A2a)
m=—o0 kanP
and
—i _ % J, (k ) —im(é—
sin(p—gy e pP TR 3 (—1)’”'"',"(—”"”«: m@=d) (A2b)

m=—w pq
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Inserting (A2a), (A2b), and (14) into Eq. (A1), we obtain

2 © ©
H(r)= 3 f_ dk, 3 hg(k)[P,(k,)&,+Q,(k,)€;+R,(k,)E,], (A3)
q=1 *® n=—ow
where
2 w oJ,, (k,.p) md, (k,.p) —itk,z+m@)+ilm —n)$
P,k)=["_d¢ (—iym VB g (k) —(—i)"———PL—B (k,) [e * k
nE fd’k—o k,n:E_m k,q9p 1 ke 7
(it | [ kpep) Ag(ks) T (K pgp)By (k) ]e_,»<kzz+n¢>’ (Ad)
kpqp kogp
2 - 9J,, (K p0p) mJ,, (K,.p) —ilk,z+m@)+ilm—n)¢
Q. (k)= ["_dé, 3 [(—i)y" ' ——EL—B (k,)+(—i)"——EL— A (k,)|e " ,
" f¢" 0 e kogdp 1 KogP !
(i) [ 137, (kpgp)By(k;) |y (Kpop) Ag(ks) | —ithzvns) , (AS)
koqOp KoqP
and
2 had \m —i(k,z+m¢)+i(m—n)d
Rplk)= [, @b 3 (i1 lkpgp)le ‘
=2m(—i)J, (kygple (A6)
l
By introducing the circular cylindrical vector wave  and
functions (16a)-(16c) and recalling the complete property K2
of this set (_)f functipns, we h?ve gc?od reason to assume —Ppg :( k,)—ik, C;’(kz )=2. (A7c)
the magnetic field in composite chiral-ferrite media can k

be represented in form of (15). Then, comparing the
coordinate components of (15) with those of (A3) where
P,(k,), Q,(k,), and R,(k,) are determined by (A4)—(A6),
we derive a set of equations

2i

A;'(kz)=—TBq(kz) , (A7a)
Pq

Ke Bk )+iCH K, )= — 2 4. (k b

Eq(z) iCj(k,)= 7(;1"‘1(,), (A7b)

q

The solutions to this system of linear equations listed as
(A7a)-(A7c) give rise to the expressions of (17a)-(19c).
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